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Abstract

The goal of this project is to create an application that provides concrete representations of the abstract no-
tions characterised by compilation theory. The application, named the FunCompiler, is to be distributed as an
additional educational resource during the delivery of the University of Glasgow’s computer science course: Pro-
gramming Languages. The FunCompiler enables its users to animate the compilation of any program written in
the Fun programming language, this includes building visualisations of the key data structures and augmenting
each step of the animation with supplementary, explanatory details. We also consider past research into the ef-
fectiveness of using animation to teach computational algorithms and attempt to use the FunCompiler to support
the theory that algorithm animation is, in particular, more beneficial to those revising than those learning for the
first time.
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Chapter 1

Introduction

With increasing technological advances and furthering levels of software abstraction, some may consider compi-
lation to be a slightly esoteric subject, in that, broad knowledge of compilation theory is typically unnecessary in
a modern environment, being required only in a small number of highly specialised industries. Nevertheless, re-
maining as a cornerstone of a computer science curriculum at many schools and universities is the art of compiler
construction, behaviour and optimisation. Why is this?

When questioned on the necessity of teaching compilation, Niklaus Wirth, the creator of the Pascal program-
ming language and renowned lecturer of compiler design states: “Knowledge about system surfaces alone is
insufficient in computer science; what is needed is an understanding of contents” [20]. Wirth’s view is one that
many share, in the respect that the most successful computer scientists must have more than a superficial un-
derstanding of which approaches to follow in a given situation. They must understand how various components
interact and why they behave the way they do. To gain a true understanding of the building blocks of computer
science is to gain a greater insight into the scientific and mathematical concepts within the field, which provide
the most effective means of making informed technological decisions.

Compilation theory is a foundational component of computer science, upon which a larger syllabus can be
developed. To students, the benefits of learning about compilation are perhaps not in its direct application, but
in its ability to act as the stepping stone that facilitates a more comprehensive grasp of other concepts; concepts
which themselves are grounded in compilation theory.

1.1 Motivation

Compilation can often be a challenging field to teach effectively. Many elements of compilation involve the
generation and traversal of complex, abstract data structures. Abstract, conceptual notions such as these are
notoriously difficult, both for students to understand and for educators to explain. We desire to find a solution to
this problem by creating techniques that provide concrete representations of these types of abstract ideas.

As a common approach to this issue, an educator will attempt to visualise the data structures and the traversals
over them. The educator usually does this by creating some sort of “slideshow”, using an application such
as Microsoft PowerPoint. The slideshow contains a pictorial representation of the data structure in question,
and each slide demonstrates a distinct step of the traversal over that data structure. For example, an educator
seeking to teach students about a depth-first traversal over a binary tree might design their slideshow similarly to
Figure 1.1, where we see that each consecutive slide illustrates the next step of the traversal by highlighting the
corresponding node.
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Figure 1.1: A sequence of slides demonstrating a depth-first traversal over a binary tree

Whilst using a slideshow to demonstrate these concepts does provide part of the solution to representing
abstract notions, they do have several limitations. Firstly, to create visualisations in this way is an arduous task
on behalf of the educator, realistically meaning that the length of the demonstration must remain short. Secondly,
there is a limited amount of control over the playback of the slides in regards to playing, pausing, rewinding and
restarting. Which of these functions is possible depends on the choice and availability of slideshow application.
Thirdly, and most importantly, the educator is restricted to showing predetermined examples only. In the case
of compilation, not only can the input be completely arbitrary, but the semantics of the compiler varies for each
unique construct in the source language. This means predetermined examples are almost guaranteed to omit
certain details, making it difficult for students to achieve a broad and complete understanding.

1.2 Aims

This project aims to alleviate or solve many of the issues currently faced in attempts to create effective visual-
isations of various compilation concepts. The project will provide a web-application which will be distributed
as an additional educational resource during the University of Glasgow’s level 3 computer science course: Pro-
gramming Languages. The application will allow users to animate the contextual analysis and code generation
phases of the Fun compiler. The animation will incorporate a representation of an abstract syntax tree (AST).

Contextual analysis and code generation are two different stages of compilation which aim to validate certain
aspects of the compiler’s input and construct some appropriate output. The behaviour of these stages is expressed
by traversals over an AST. An AST is a tree-based data structure that represents the hierarchical syntactic struc-
ture of a program. Fun is a simple, educational programming language equipped with a compiler. Chapter 3
introduces each of these concepts in considerably more detail.

The application will allow a user to supply a program written in the Fun language as input to the Fun compiler.
The user can then choose to animate either the contextual analysis or code generation phase of the resulting
compilation. In both cases, a visualisation of the input program, represented as an AST, will be presented to the
user. In order to demonstrate how the compiler traverses the AST during these phases, nodes within the tree will
be highlighted consecutively, corresponding to the progression of the traversal, akin to the method displayed in
Figure 1.1. In general, the application should:

• Allow a user to input any program written in the Fun language.

• Animate the contextual analysis phase of a program’s compilation.

• Animate the code generation phase of a program’s compilation.

• Augment the animation with any relevant supplementary information that may provide insight into the
internal logic of the compiler.

• Allow the animation to be played, paused or stepped through (backwards and forwards).

The application resolves many of the problems we previously discussed with respect to slideshow-based
visualisations. Most obviously, educators are no longer required to invest large amounts of time into creating
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the visualisations themselves. They can simply project footage of the application to students within a classroom
setting, or even better, direct students to access the application themselves. The application aims to implement
playing, pausing, rewinding and restarting of the animation, meaning the previous issues regarding playback
limitations are removed as long as the user has access to a web browser. The application also allows any arbitrary
Fun program to be animated, meaning the restriction of only showing examples with a predetermined input is
eliminated. Finally, the application desires to augment the animation by automatically displaying informative
details describing the compiler’s progress and internal logic, something that is not currently possible by present
techniques. The application will hopefully provide a better means for those looking to learn, but also remove
some of the struggle taken on by educators when teaching the topic.

1.3 Outline

The remainder of this dissertation is organised as follows:

Chapter 2 - Background & Related Work

Considers prior research that investigates the effectiveness of using algorithm animations in an educa-
tional manner. Additionally, explores and critiques any existing web-based algorithm animation tools.

Chapter 3 - The Fun Programming Language & Compilation Theory

Introduces the reader to the main theoretical concepts used throughout this dissertation.

Chapter 4 - Requirements

Establishes the requirements of the application and the methods by which they were elicited.

Chapter 5 - Design

Analyses the application’s requirements to build an aesthetic design of the user interface.

Chapter 6 - System Architecture

Defines the technical infrastructure of the application and explains the rationale behind particular lan-
guage and tool choices.

Chapter 7 - Implementation

Describes the physical implementation details of the application’s key features.

Chapter 8 - Evaluation

Discusses the evaluations conducted to assess the quality of the application from multiple perspectives.

Chapter 9 - Conclusion

Summarises the project by reflecting on the lessons learned during development and suggests interesting
possibilities for future work.
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Chapter 2

Background & Related Work

Despite the animation of compilers being a considerably novel area of research and development, attempts to
visualise computing algorithms date as far back as the 1980s [3]. The vast majority of work in the field up to
now has been focused on the animation of complex, yet small and well-defined algorithms, most notably sorting
algorithms or tree traversals.

Indeed, compilation is certainly not small nor particularly well-defined (in that the behaviour of the compiler
can vary significantly depending on the implementation), however, many aspects of typical algorithm anima-
tions (such as tree traversals) can be found in abundance within a potential compiler animation. Ultimately,
compilation itself is just an algorithm, and it would seem logical to assume that any lessons learned during the
development and evaluation of existing algorithm animation software should be equally applicable to the area of
compiler animation.

The remainder of this chapter considers previous research which attempts to evaluate the effectiveness of
algorithm animation from an educational perspective. We then explore and critique some modern examples of
web-based algorithm animation tools. Finally, we discuss how we might use the results of prior evaluations along
with our analysis of existing products to influence our design of a compiler animation tool.

2.1 Effectiveness of Algorithm Animation

One of the earliest algorithm animation systems was developed by Bentley and Kernighan in 1987 [3]. The
system enabled users to annotate sections of an algorithm which were later processed by an interpreter to create
a sequence of still pictures; an example of which is shown in Figure 2.1. In the very first line of the system’s
user manual Bentley and Kernighan quite confidently state: “Dynamic displays are better than static displays for
giving insight into the behaviour of dynamic systems”. This belief of Bentley and Kernighan is one that many of
us would intuitively believe, in that, when attempting to understand any multi-step process, an animation which
displays each step of that process is more effective than a single static diagram, or a paragraph of explanatory
text. However, it is important to consider whether this belief has statistical backing or whether it is simply an
assumption. Certainly, in 1987 algorithm animation itself was still in its infancy and no studies had been carried
out that provided the empirical evidence to support this intuition.

Six years later in 1993 Stasko, Badre and Lewis were amongst the first to consider whether algorithm an-
imation assisted learning as much as we might think [15]. Stasko, Badre and Lewis carried out a study which
involved testing two separate groups of students on their ability to learn the concept of a “pairing heap” [16],
with one group using textual descriptions of the algorithm and the other using an animation of the algorithm.
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Figure 2.1: A sequence of stills from an insertion sort algorithm

Stasko then repeated a similar experiment in 1999 with Byrne and Catrambone [4]. Again, one group used an
animation but this time the other group used static diagrams (such as figures from a textbook), instead of textual
descriptions like in the previous experiment. In both studies, the researchers found the results to be “disappoint-
ing”. They found that whilst students in the animation group did perform moderately better than their textual or
diagrammatic counterparts, the improvement was not statistically significant.

Despite computer graphic capabilities improving significantly since the 1990s, other more recent studies have
shown similar results. The general consensus being that whilst animations do provide a small educational benefit,
it is certainly not as large as our intuition would lead us to believe. However, that is not to say that algorithm
animations are without use. Stasko, Badre and Lewis suggest that algorithm animations are not particularly
effective when students are trying to learn a concept for the first time, but are likely to be much more suitable
when students are looking to refine their understanding of a particular notion. The theory is that students should
ideally learn the primitive concepts of the algorithm using conventional methods initially, then transition to using
animations when looking to clarify and solidify their understanding of certain aspects.

Stasko, Badre and Lewis also reveal a list of guidelines they believe to be effective advice when building
algorithm animations, some of which are summarised below:

• The animation should be augmented with textual descriptions.

• The animation should include rewind-replay capabilities.

• Students should be able to build the animation themselves.

These guidelines suggest that algorithm animations require accompanying messages that explain the logic of the
algorithm at each step. Also, the animation should be interactive in order to engage students in “active” learning.
This interactivity would include intricate controls over the playback of the animation and the ability to modify
the input of the algorithm.

2.2 Existing Products

Currently, very few existing tools provide even static illustrations of compilation components (such as ASTs)
and virtually no tools exist that create animations of the compilation process as a whole. There is however,
an abundance of web-applications that animate more straightforward algorithms, such as sorting or searching
algorithms.

One of the most popular and well implemented is VisuAlgo [18]. VisuAlgo provides an interface for ani-
mating various sorting algorithms, including bubble sort, selection sort, etc. As shown in Figure 2.2a, VisuAlgo
implements many of the guidelines we previously listed. It provides impressive playback controls, the ability to
choose the input of the algorithm and displays in-depth descriptions of the algorithm’s current progress in both
plain English and pseudo-code.
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(a) VisuAlgo (b) USF’s Dijkstra’s algorithm animation

Figure 2.2: Examples of existing algorithm animation software

Departing from pure sorting algorithms, the University of San Francisco (USF) has developed a small web-
application which animates Dijkstra’s algorithm [11], as shown in Figure 2.2b. Dijkstra’s algorithm is arguably
more complicated than most sorting algorithms, involving the need to visualise tables and graphs. However, we
see that at the expense of this complexity, the application has sacrificed several usability aspects in comparison to
VisuAlgo. The user cannot define their own input and they cannot pause or rewind the animation. Additionally,
whilst some very primitive details are displayed next to the table at each stage, they are far from informative
explanations of the algorithm’s progress.

2.3 Discussion

Despite studies showing that algorithm animation is not as effective as we might have initially believed, it would
seem that the surprisingly poor performance is due to specific circumstances which could be avoided if the
environment in which an algorithm animation tool was targeted for use was selected more carefully. The studies
suggest that, ideally, students should have been taught the concepts using conventional methods to begin with,
then the educator should distribute the application to students who could utilise this as a means to refine and
clarify their understanding. Fortunately, this describes precisely the scenario in which the application for this
project would be used, where students of the Programming Languages course would be directed to use the tool
as a secondary learning resource after first learning the concepts in a classroom setting.

We also consider the previous guidelines proposed by Stasko, Badre and Lewis and how they might apply to
an application that animates a compiler. It appears the potential system should:

• Provide supplementary textual explanations that rationalise and justify the logic of the compiler.

• Include rewind-replay functionality that allows the animation to be restarted, or played step-wise, back-
wards and forwards.

• Ensure users can create the animation themselves by allowing them to modify the input to the compiler.

Finally, after analysing some examples of current products that are available in the area of algorithm anima-
tion, such as VisuAlgo and USF’s Dijkstra’s algorithm animator, it seems there is a trade-off between complexity
and usability. In order to animate a more complex algorithm, USF sacrifices much of the visual support and
playback control that VisuAlgo is able to provide.

Whilst we look to VisuAlgo as the ideal benchmark to strive towards in terms of the functionality it offers, we
note that a compiler animator must overcome this trade-off in order to be educationally effective. That is, whilst
animating an algorithm considerably more intricate than even Dijkstra’s algorithm, we must also implement
the usability and interactivity features such as playback control that are embedded within the guidelines of the
previous studies.
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Chapter 3

The Fun Programming Language &
Compilation Theory

This chapter aims to introduce the reader to the main tools and concepts used throughout this dissertation. Firstly,
we begin with a small overview of the Fun programming language and its main features. Secondly, we consider
how and why compilers parse source code into syntax trees and why some representations of a syntax tree might
be more beneficial than others. Thirdly, we take an in-depth look at the three main phases of compilation:
syntactic analysis, contextual analysis and code generation; the latter two of which form the basis of this project.
Finally, we discuss the use of code templates as a theoretical tool for assisting compiler developers in deciding
which object code to generate for various constructs within a programming language.

3.1 The Fun Programming Language

Included in Niklaus Wirth’s 1976 book Algorithms + Data Structures = Programs [19], was a language written
entirely in Pascal named PL/0, which was intended as a small educational programming language, used to teach
the concepts of compiler construction. The language contains very primitive constructs and limited operations.
Similarly to PL/0, Fun is a simple imperative language built using Java and ANTLR [1], developed at the Uni-
versity of Glasgow by David Watt and later extended by Simon Gay. Its purpose is to exhibit various general
aspects of programming languages, including the construction of an elementary compiler. The language is used
to help teach many of the concepts within the level 3 computer science course, Programming Languages, at the
University of Glasgow.

Fun has variables, procedures and functions. Variables can have a declared type of int or bool only. All
variables must be initialised with an expression of the same type upon declaration. Procedures have type T →
void and functions have type T → T’, where T represents the type of an optional parameter. Procedures
return no value (hence→ void) and functions must return a value of the type T’ (hence→ T’). Fun has one
predefined function and one predefined procedure: read and write. read() is a function that returns user
input as an integer and write(int n) is a procedure that writes the value of n to standard output. Below is an
example of a Fun program which utilises variables, functions and procedures to calculate and output the factorial
value of user input:

bool verbose = true

func int fact(int n):
int f = 1
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while n > 1:
f = f*n
n = n-1 .

return f
.

proc main():
int num = read()
while not (num == 0):

if verbose: write(num) .
write(fac(num))
num = read() .

.

Similarly to other languages, the entry-point of a Fun program is the main() procedure. In this example,
main() begins by reading a number from user input. If the number is 0 the program terminates, otherwise, if
the boolean variable verbose is set to true, main() writes the number to standard output and then passes
the number to the fact() function. fact() iteratively calculates and returns the factorial value of its input
argument n. main() then writes the factorial value to standard output and requests another number from the
user.

The Fun programming language has a flat block structure, meaning that variables may reside in either a
local or a global scope, and that the same identifier may be declared locally and globally. Since functions and
procedures cannot be defined within other functions and procedures, they are always global. A variable that
is declared as a parameter of, or declared within, a function/procedure is considered local. Variables declared
outside of any function/procedure are considered global. In the example above, we note that verbose is a
global boolean variable, whereas n and f are integer variables local to the function fact.

Whilst Fun may differ significantly from other programming languages, particularly in its complexity, it is
not the case that the notions it aims to represent are exclusive to the Fun language only. Fun is sufficiently generic
that core concepts can be delivered in a simple, comprehensible format (due to the simplicity of the language),
which then facilitates learners in applying the same logic to more complex constructs in other languages.

3.2 Syntax Trees

During compilation, a source program is parsed into a syntax tree. A syntax tree is a hierarchical syntactic
representation of a source program; with top-level statements nearer the root, and more deeply nested statements
nearer the leaves. We typically consider two types of syntax tree: a parse tree (sometimes called a concrete syntax
tree) and an abstract syntax tree (AST). Translating a source program into a syntax tree means the compiler can
more easily reason about the underlying structure and grammatical nature of the program, which is necessary for
certain stages of compilation.

A parse tree retains all information about a program, including the information that may appear to be unnec-
essary, such as white-space and parentheses. Conversely, an AST is a smaller, more concise adaptation of the
parse tree. An AST usually ignores redundant details which are derivable from the shape of the tree. Figure 3.1
demonstrates the visual differences between a parse tree and an AST of the same hypothetical Fun program.

During the initial stages of compilation, the compiler will attempt to translate the input program into either a
parse tree or an AST. The generated tree is then traversed during contextual analysis and code generation, which
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(a) Parse tree (b) AST

Figure 3.1: Parse tree and AST of the same hypothetical Fun program

is described in detail in Section 3.3. How the compiler chooses to visit each node in the tree during the traversal
is language-dependent, but the semantics are vaguely similar to that of a depth-first traversal.

Since ASTs are usually much smaller and less crowded than their parse tree counterparts, they are often far
easier to read and understand. Any information that is lost from the conversion of a parse tree to an AST is usually
semantic and does not affect how the syntax tree would be evaluated. Consequently, when trying to illustrate
syntax tree concepts to students from an educational perspective, we generally prefer to use visualisations of
ASTs over parse trees.

3.3 Compilation Phases

In general, compilation is the process of automatically translating high-level code into low-level code. The most
common case is to convert a program whose source code is written in some programming language, into an
executable program. This compilation process can usually be decomposed into three distinct phases:

a) Syntactic Analysis

b) Contextual Analysis

c) Code Generation

If either syntactic or contextual analysis encounters an error (as determined by the language’s specification)
during its execution, the phase completes, but the remainder of the compilation process is halted and the errors
are reported to the programmer. Note that the following descriptions assume the compiler is employing an AST
representation of a syntax tree. See Figure 3.2 for a diagram of a typical compilation pipeline.

Figure 3.2: Typical compilation pipeline
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3.3.1 Syntactic Analysis

Syntactic analysis takes a source program as input and upon success, produces an AST. The purpose of syntactic
analysis is to verify whether the source program is well-formed in accordance to the source language’s syntax
rules. Syntactic analysis can be broken down into lexing and parsing.

Lexing is the process of breaking down an input program into a stream of tokens. A token is simply a single
element of the input program. For example, a token could be an individual identifier, operator or keyword. How
the compiler chooses to define tokens is dependent upon the implementation of the language. The token stream
is then passed as input to the parser. Figure 3.3 shows how a small excerpt of code may be decomposed into a
token stream.

Figure 3.3: Lexing of source code into a token stream

A parser converts a token stream into an AST using some parsing algorithm. The Fun compiler uses
recursive-descent parsing, which involves “consuming” the token stream from left to right. At each token,
the parser checks whether the next sequence of tokens are of the correct type, as determined by the language’s
syntax. The parser carries out this check for every token in the stream. If any checks fail, a syntax error is
reported to the programmer. If all tokens are consumed successfully, the parser outputs an AST representing the
parsed program.

3.3.2 Contextual Analysis

Upon successful completion of syntactic analysis, the generated AST is traversed by a contextual analyser. A
contextual analyser checks whether the source program represented by the AST conforms to the source lan-
guage’s scope and type rules. Contextual analysis utilises an auxiliary data structure called a type table in order
to help carry out these checks. Each row of the type table contains three fields of information about a declared
variable: its scope (which as discussed in Section 3.1 can be local or global), its identifier and its type. Figure
3.4 demonstrates a small example. The table reveals that the corresponding program contains two integer vari-
ables with the identifier x (globally and locally defined) and a global procedure with the identifier main which
takes no parameters and returns no value. Contextual analysis can be broken down into scope checking and type
checking.

Figure 3.4: Type table

Scope checking ensures that every variable used in the program has been previously declared. If the contex-
tual analyser encounters the declaration of an identifier as it is traversing over the AST, it inserts the identifier
along with its scope and type into the type table. If the contextual analyser finds that there is already an entry
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in the table with the same scope and identifier, then a scope error is reported to the programmer. Similarly, if
the contextual analyser encounters the usage of an identifier during the traversal, it checks that the identifier is
already in the type table (i.e., has been previously declared). If the identifier cannot be found in the type table,
then a scope error is reported to the programmer. Figure 3.5 shows two ASTs that illustrate the declaration and
usage (assignment) of a variable n. The variable declaration construct in Figure 3.5a would lead the compiler to
insert a row into the type table with values: [global, n, INT]. The variable assignment construct in Figure
3.5b would lead the compiler to look up entries in the type table with identifier n to ensure the variable has been
previously declared before attempting to assign a new value to it.

(a) Variable declaration (b) Variable assignment

Figure 3.5: ASTs demonstrating the declaration and assignment of a variable n (assuming global scope)

Type checking ensures that every operation in the program has operands of the expected type. The rules
used by the contextual analyser to determine if an operation has the “correct” operands vary from construct to
construct. For example, referring back to Figure 3.5b, we see the construct for variable assignment. In this case,
we are assigning the value of some expression, represented by expr, to the variable n. When the contextual
analyser encounters this construct during the traversal, it will retrieve the type of n from the type table, then
traverse the expression expr to determine its type. The contextual analyser will then check that the type of
expr is the same as the type of n. For example, given that in Figure 3.5a n was defined as an integer, x = 5
+ 10 would be a valid assignment, whereas x = false would result in a type error.

3.3.3 Code Generation

Upon successful completion of contextual analysis, the generated AST is traversed by a code generator. A code
generator translates the source program into a lower level language, such as assembly language or object code.
Code generation utilises an auxiliary data structure called an address table. Each entry in the address table
contains three fields of information about a declared variable: its scope, its identifier and its address. Figure 3.6
demonstrates a small example. The table reveals how each identifier has been allocated an address in the address
space belonging to either local or global variables. Code generation can be broken down into address allocation
and code selection.

Figure 3.6: Address table

Address allocation decides the representation and address of each variable in the source program. If the code
generator encounters the declaration of an identifier as it is traversing over the AST, it determines a suitable
address which it inserts into the address table along with the corresponding identifier and scope. In the case
of Fun, all variables conveniently have a size of 1, meaning the compiler can simply allocate incrementally
consecutive addresses to each variable as it is encountered.
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Code selection selects and generates the final object code. The developer of the compiler should plan which
object code is selected for each construct encountered within the AST. The developer does this by devising a
code template for each construct in the language.

3.4 Code Templates

When developing a compiler, it is important to consider how each construct in the underlying language should be
translated into object code. A code template provides a means of creating a theoretical model for each construct
that specifies how the corresponding object code should be selected. Each template is simply a list of directives
(written in plain English) that specifies which object code instructions to emit and defines how any constituent
expressions/commands of the construct should themselves be considered for code selection.

For example, in Figure 3.7a we see an AST that demonstrates the addition of two expressions, where expr1
and expr2 are sub-expressions of the PLUS construct. Of course, the value of the two expressions must be
calculated before attempting to add the two together. In other words, the compiler must evaluate expr1 and
expr2 and emit the object code to load those values into memory before emitting the object code to perform
their addition. Therefore, the code template for the PLUS construct should state that expr1 and expr2 are to
be evaluated before we emit any object code to add the expressions together.

In Figure 3.7b we see an illustration of the code template as described above. Considering each instruction
sequentially, it stipulates that firstly we should generate the object code for expr1, then expr2. Only after
emitting both instructions that load the value of these expressions into memory can we emit the ADD object code
instruction.

(a) AST (b) Code template

Figure 3.7: AST and code template of a PLUS construct

In the general case, it is often true that the compiler may need to translate some (or all) of the constituent
statements of a construct into object code before emitting any object code specific to the construct itself. Unfor-
tunately, how each construct should be evaluated in regards to code generation is not always immediately clear
just from the structure of the AST. This is the scenario in which code templates are practical, as they provide a
way to exemplify how each construct in the source language should be translated into object code.
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Chapter 4

Requirements

This chapter discusses the requirements gathering phase of the application we intend to build, which we will
henceforth refer to as the FunCompiler. Firstly, we detail the methods by which the requirements were collected.
Secondly, we specify the FunCompiler’s user stories, functional requirements and non-functional requirements.
Finally, we attempt to summarise the functional requirements by creating a description of how an individual may
use the application.

4.1 Methodology

The requirements of the FunCompiler were elicited through two main techniques. Firstly, through multiple
interviews with Simon Gay, who is the current lecturer of the Programming Languages course at the University
of Glasgow. Since the FunCompiler is being developed to act as an educational aid during this course, Simon
clearly has the experience and expertise to offer valuable recommendations on the function and operation of the
application. The second technique was to simply utilise the insight gained from performing background research.
In particular, we strive to ensure the requirements meet the three guidelines we formulated in Section 2.3. Below,
the three guidelines have been rephrased to apply directly to the FunCompiler:

Guideline a) Provide supplementary textual explanations that rationalise and justify the logic of the compiler as
it visits each node in the AST.

Guideline b) Include rewind-replay functionality that allows the compilation animation to be restarted, or played
step-wise, backwards and forwards.

Guideline c) Ensure users can create the animation themselves by allowing any arbitrary Fun program as input
to the compiler.

4.2 User Stories

After conducting the interviews and the background research, we devise a set of user stories. User stories are
short and simple descriptions of a feature, told from the perspective of a potential user:

• As a user, I want to read details of the Fun language, so that I can write valid Fun programs as input and
better understand the compilation animations.
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• As a user, I want to be able to input any Fun program, so that I can learn about the compilation process in
the general case, not just for specific examples.

• As a user, I want to be able to view the animation of the contextual analysis phase of my program, so that
I can understand how the compiler carries out this task.

• As a user, I want to be able to view the animation of the code generation phase of my program, so that I
can understand how the compiler carries out this task.

• As a user, I want to be able to see textual descriptions that explain what the compiler is doing at each stage
of the animation, so that I can better understand the logic of the compiler.

• As a user, I want to be able to see any supplementary information or feedback (including address/type
tables, code templates and generated object code), so that I get all the information available in order to
help further my understanding.

• As a user, I want to be able to replay an animation, so that I can review any details I missed/misunderstood.

• As a user, I want to be able to step through the animation at my own pace, forwards or backwards, so I can
more easily understand what is happening during the animation.

4.3 Functional Requirements

We then use the functionality as described within the user stories to create a formal list of functional requirements.
Functional requirements are intended to capture a specific function of a system:

Functional
Requirement Description

1 Allow users to input any arbitrary Fun program as input to the compiler animator.

2 Allow users to animate either contextual analysis or code generation separately.

3 Display the generated AST that represents the input Fun program.

4 Enable a controllable animation over this AST representing one of the two
phases (contextual analysis or code generation).

5 At each step of the animation, highlight the corresponding node in the AST
signifying the progress of the compiler’s traversal.

6 Allow users to play the animation continuously.

7 Allow users to pause the animation.

8 Allow users to move forwards through the animation, one step at a time.

9 Allow users to move backwards through the animation, one step at a time.

10 At each step of the animation, display messages that explain the logic of
the compiler, i.e., what it is currently doing, or what it is going to do.

11
At each step of the animation, display the type table (if contextual analysis)
or the address table (if code generation) in its current state during the
compilation.

12 During code generation, display the code template of each node as it is visited.

13 During code generation, display the emitted object code in its current state during
the compilation.

14 If a user inputs a syntactically invalid Fun program, prevent any animations and
report the syntax errors to the user.
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15
If a user inputs a contextually invalid Fun program, allow animation of the
contextual analysis phase but disallow animation of the code generation phase
(and report the contextual errors to the user).

16 Make the full specification of the Fun language available within the web
application.

Along with implementing the core functionality of a compiler animator (along with a few extra features), it
is clear to see from functional requirements 1, 6, 7, 8, 9 and 10, that we have more than comfortably included the
elements necessary to satisfy guidelines a), b) and c).

4.4 Non-functional Requirements

Finally, we define a small list of non-functional requirements. In contrast to functional requirements that detail
specific behaviours of a system, non-functional requirements often consider overall utilities of a system, such as
security, usability and extensibility:

Non-Functional
Requirement Description

1 The application must work on all modern browsers.

2 The application must be able to interact efficiently with a Java-based
application (the Fun compiler).

3 The application must have a responsive design, at least for tablet-sized
screens and larger.

4 The application must ensure no dangerous code can be executed, meaning no
code that could potentially crash the client browser or the server machine.

4.5 Discussion

In an attempt to summarise the functional requirements we consider a potential workflow of the FunCompiler.
Firstly, the user arrives at the website and should immediately be able to view the specification of the Fun
language. Then, the user can type a Fun program into some form of code editor and choose to animate either
contextual analysis or code generation. At this point, if there are any syntactic or contextual errors, they will be
handled using the semantics as described in functional requirements 14 and 15.

After selecting one of the two phases, the AST that represents the input program is displayed on screen
along with playback buttons (play, pause, forwards, backwards). As the animation progresses, nodes within the
AST are highlighted to symbolise the current progress of the compiler. As each node is highlighted, detailed
information (as described in functional requirements 10 to 13) is simultaneously displayed elsewhere on screen.
The user is of course free to pause the animation to review the current information visible, or rewind to review. At
any point the user may modify the current input Fun program and select either the same or a different compilation
phase, which will halt any current animations. This workflow is sufficient to satisfy all functional requirements
as defined above.
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Chapter 5

Design

This chapter covers the aesthetic design process of the FunCompiler. We start by developing simple low-fidelity
wireframe designs of the user interface’s individual components and consider how each of these different com-
ponents might satisfy a number of our functional requirements. We then look at a more complete design of the
user interface and propose how a user might transition from page to page. Finally, we define how the application
is to react upon encountering errors within the input Fun program. Note that full-size versions of the following
designs (along with all other figures presented in this dissertation) can be found in Appendix D.

5.1 Application Interface

To begin realising the project’s functional requirements we develop a series of quick and primitive wireframes,
each representing an individual component of the user interface. For each component, we consider how it may
meet one or more of the functional requirements (FRs) as defined in Chapter 4. Note that the application’s non-
functional requirements (NFRs) cover issues that are strictly more technical, and whilst they are not discussed
explicitly, we do make indication of when each is satisfied throughout the remainder of this dissertation.

5.1.1 Code Editor

The code editor will be the text-area in which users are able to enter code written in the Fun language (FR 1).
Ideally, the code editor should follow some of the semantics of standard programmatic text editors, including
syntax highlighting and auto-indention. Notice that in Figure 5.1 two buttons for “Contextual Analysis” and
“Code Generation” have been attached to the bottom of the code editor. These buttons will trigger the compilation
of the input code and thus initiate the corresponding animation (FR 2).

5.1.2 AST

The AST of the input program is the object over which the animation will occur. The AST will be displayed in the
conventional hierarchical tree format where the animator will highlight each node consecutively, corresponding
to the progress of the compiler (FR 3, 5). For example, along with showing the general structure of the AST for
a Fun program, Figures 5.2a to 5.2c demonstrate how the application might animate the AST. At each “step” of
the animation, the next node in the traversal is highlighted, whilst the previous node is returned to its original
state.
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Figure 5.1: Code editor wireframe

(a) Step 1 of animation (b) Step 2 of animation (c) Step 3 of animation

Figure 5.2: AST wireframes

5.1.3 Augmentations

As the compiler traverses the tree, the application should augment the animation with any supplementary infor-
mation that may aid the user’s understanding of the compilation, including explanatory messages, type/address
tables, code templates and object code. We henceforth collectively refer to each of these items as “augmen-
tations”. Figure 5.3a illustrates the augmentations required for contextual analysis, including a type table and
a section to display explanatory messages (FR 10, 11). Figure 5.3b illustrates similar augmentations for code
generation, with the type table replaced by an address table and two added sections to display code templates
and object code (FR 12, 13). Note that all augmentations, other than tables, are just textual descriptions/lists, and
hence are simply represented as labelled areas in the designs.

5.1.4 Playback Controls

Users require the ability to play, pause and step through (backwards and forwards) the animation. Figure 5.4
shows two sets of playback buttons (FR 4). Intuitively, when the play button is pressed, it should be replaced
with the pause button and vice versa. If the user presses the play button, the animator should highlight the next
node in the sequence at regular time intervals (for example, each second) (FR 6). If the user presses the pause
button, the animation should be halted and the currently highlighted node should remain highlighted (FR 7). If
the user presses the forwards/backwards buttons, this will highlight the next/previous node in the sequence, one
node per button press (FR 8, 9). If the animation is currently playing when a forwards or backwards button is
pressed, it should be implicitly paused.

17



(a) Contextual analysis augmentations (b) Code generation augmentations

Figure 5.3: Augmentations wireframe

Figure 5.4: Playback controls wireframe

5.1.5 Fun Specification

Finally, as a matter a convenience, users may wish to have access to the full specification of the Fun language
within the application. Figure 5.5, illustrates the specification broken down into seven sections, each of which
covers a distinct concept of the language (FR 16). Tabs along the top of the component allow the user to navigate
between each section.

Figure 5.5: Fun specification wireframe

5.2 Full Design

With all necessary components designed, we consider how to combine each of these to create a set of full-sized
designs. The presiding design philosophy is that the code editor, the animation and the augmentations are all
available within the same view. This is important for two reasons. Firstly, from an educational perspective, there
is the obvious necessity that users are able to easily cross-reference between these three components. Secondly,
from a usability aspect, as an animation is running, a user should be able to modify the input code and generate
a new animation without having to navigate to a different page.

Figure 5.6 demonstrates the three main sections of the FunCompiler. Figure 5.6a demonstrates the landing
page, in which the user has access to the code editor along with the full specification of the Fun language. Upon
choosing to animate contextual analysis or code generation, the user is taken to the page shown in Figure 5.6b
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or 5.6c respectively. Here we see an AST generated from the input program, a set of playback controls for the
animation and an area to display the relevant augmentations. Note that the user still has access to the code editor
and is free to modify the input program and generate a new animation.

(a) Landing page
wireframe

(b) Contextual analysis animation
wireframe

(c) Code generation animation
wireframe

Figure 5.6: The three main sections of the FunCompiler

5.3 Error Handling

The above component designs successfully cover all but two of the 16 functional requirements. The remaining
functional requirements (FR 14, 15) are concerned with error handling and preventing certain actions in the
event that errors are found within the input Fun program. More specifically, FR 14 states that we must not
allow the animation of either contextual analysis or code generation in the event that the input Fun program
contains syntax errors and FR 15 states that if the input Fun program contains contextual errors, we may animate
contextual analysis, but not code generation. In both cases, if the user tries to execute a prohibited action, they
are presented with the relevant errors, as shown in Figure 5.7. In order to retain as much space as possible for the
more important aspects of the interface, when a user attempts to submit an invalid program, we simply display
the errors in a pop-up window without disturbing the core contents of the page. With this final addition, all
functional requirements of the FunCompiler have been successfully realised.

Figure 5.7: Syntax error wireframe
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Chapter 6

System Architecture

In this chapter we define the system architecture of the FunCompiler. That is, we establish individual system-
level components and build a model to specify their organisation/structure, alongside showing the patterns of
communication between them.

Firstly, we discuss the differences between a monolithic and a micro-service architecture in regards to web-
applications. Secondly, we consider which of these architectures is most applicable to the FunCompiler and
how the components of the system will be arranged to fit that model. Finally, using a bottom-up approach, we
describe the specific technologies that will be used within the FunCompiler, from application-level development
frameworks to build tools and packaging systems.

6.1 Monolithic vs. Micro-service Architecture

Traditionally, websites have been built as large, monolithic applications, where each unique service within the
website (e.g., authentication, routing, API exposure) is encapsulated under one application, as illustrated in
Figure 6.1a. Whilst a monolithic architecture may be an appropriate choice for many basic applications, if the
system has a diverse range of service implementations, issues are likely to occur.

For example, consider the scenario of a monolithic online shop. Suppose the vast majority of the website’s
business logic is written in Python but the authentication service is written in PHP. To force the PHP service to
operate within a Python environment not only clearly violates the basic principles of a separation of concerns
[10], but likely leads to inefficient/insecure methods of communication (e.g., writing/reading from files) and an
unscalable, tightly coupled code-base. To solve this issue (whilst maintaining a monolithic architecture) would
require translating the authentication service from PHP to Python, however, this may be undesirable or simply
unfeasible.

The emerging trend is to extract each of these services out of the main application and allow them to behave
as stand-alone components, referred to as micro-services [9]. Figure 6.1b demonstrates how a user interacts with
the web-application, which in turn communicates with the individual micro-services that have been separated
into their own components. Employing a micro-service architecture decouples the services, handles scalability
issues with greater ease and allows diversity in programming language or web-framework selection.
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(a) Monolithic architecture (b) Micro-service architecture

Figure 6.1: Monolithic vs. micro-service architecture

6.2 FunCompiler Architecture & Communication

As discussed in Chapter 3, the compiler of the Fun language is a pre-existing piece of software built with Java
and ANTLR. In order to incorporate the compiler within a web-application we have three choices:

a) Translate the compiler into the same language as used to implement the web-application.

b) Implement the web-application using a Java-based web-framework.

c) Employ a micro-service architecture, partitioning the FunCompiler into two distinct units: the web-application
and the compiler.

Although all choices do essentially produce the same result, choice a) leads to a significant time investment where
any software validation provided by the original compiler no longer applies, and choice b) compels us to make
a framework selection that is perhaps based more on a justification of convenience than it is prudence. Opting
for choice c) means that the compiler need not be translated, nor are there any limitations on the choice of web
-application framework. Furthermore, even if the compiler and the web-application were natively developed in
the same language, choice c) still enforces the most robust separation of concerns.

Following this, we decompose the FunCompiler into two separate components: the web-application and the
compiler. The web-application is the user-facing system, serving the web-pages and displaying the animations.
The compiler behaves as a micro-service which receives a Fun program as input and outputs the result of the
program’s compilation (the contents of this result we will discuss more in Section 7.1.2).

Of course, the web-application must be able to send user-written Fun programs to the compiler. Likewise,
the compiler must be able to return the result of the compilation to the web-application. Therefore, the two
components require some method of communication. We do this by exposing the compiler as an API. The API
under these circumstances is very simple and requires only one endpoint.

When a user enters a program within the web-application and chooses to animate either contextual analysis
or code generation, the web-application makes an API request to the compiler, sending the input program. When
the API receives this request, it passes the program as input to the compiler, executes the compilation and sends
a response containing the output back to the web-application. The web-application uses the contents of this
response to build the corresponding animation (NFR 2). Figure 6.2 illustrates this flow of information.

Figure 6.2: Web-application communicating with the compiler via an API
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6.3 Technologies & Tools

With the FunCompiler split into its constituent components, we discuss the various system-level technologies
and tools that will be used to implement, build and run the application. We start by examining the application-
level technologies used by the web-application and the compiler individually, then we consider how to create an
abstraction of the system as a whole and package it as a single, portable instance.

6.3.1 Web-application Technologies

Laravel - A convenient simplification of the FunCompiler is that the system requires no persistent storage,
meaning our system architecture need not include a database. However, even without a database, the web-
application is still required to perform a small amount of server-side (or back-end) duties, namely delivering
API requests and handling the corresponding responses. We implement this functionality using Laravel, which
is an open-source PHP framework intended for the rapid development of web-applications. Like the majority of
web-frameworks, Laravel follows a standard model-view-controller (MVC) architectural pattern [2].

One might argue that given the limited amount of server-side processing required, a relatively large scale
framework such as Laravel is excessive. Whilst it is true that a minimalistic framework (i.e., a Node framework
such as Express) could achieve the same functionality, we note that under these circumstances, any performance
difference between the two frameworks is likely to be negligible. Thus, we opt for Laravel due to the extensive
experience the developer of this project has with the framework.

Using Laravel from the beginning also provides some sense of “future-proofing”, in the sense that if the
application were required to implement considerably more complex server-side functionality in the future, we
already have a robust framework in place that is capable of handling these kinds of complications; something
that may not be possible with a minimalistic framework.

Composer - Within our PHP application we require several dependencies, including API libraries and Laravel
itself. To manage and install these dependencies we use Composer, which is the quintessential dependency
manager for PHP applications.

Composer utilises a configuration file called composer.json in which we can define all the PHP dependen-
cies we require, along with the desired versions of those dependencies. By executing composer install,
Composer will download and install the dependencies specified within composer.json and generate com-
poser.lock, which specifies the actual version of each dependency installed. After composer.lock has been
generated, subsequent invocations of composer install will only download the versions of each depen-
dency as specified in composer.lock, regardless of the version stated in composer.json.

This versioning system is practical because it means that all developers of a project will install the same
versions of each dependency upon executing composer install, assuming composer.lock is committed
to some kind of version control system. If we do wish to update the dependencies to more recent versions, we
invoke composer update, which updates composer.lock accordingly.

6.3.2 Compiler Technologies

ANTLR - The Fun language and the associated compiler were built using ANTLR, which is a tool that when
given a grammar (a file defining the syntax of language), can automatically generate certain components of a stan-
dard compiler, such as a lexer and a recursive-descent parser. ANTLR also implements a visitor interface which
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provides the foundation for executing traversals over the parser-generated syntax tree, allowing the developer to
implement a contextual analyser and code generator.

Spark - Alone, the compiler has no way of interacting with the web-application. To enable this, we form a
channel of communication between the two by encapsulating the compiler within an API which contains a single
endpoint. The endpoint receives a user submitted input program from the web-application, passes the program
as input to the compiler, receives the output of the compilation and then passes this as a response back to the
web-application.

Since the API requires only a single (and relatively simple) endpoint, we look to choose a framework that
will allow us to expose an API with as little overhead as possible. The only limitation being that the framework
must be Java-based in order to be compatible with the compiler. Consequently, we select a Java micro-framework
ideal for creating APIs with minimal boilerplate called Spark (not to be confused with Apache Spark). Spark
requires little setup and has extremely concise syntax, similar to that of functional languages, meaning we can
create a REST API [17] with very few lines of code (as we will see in Section 7.1.1).

Maven - Maven is the definitive standard in regards to automated build tools for Java projects. The FunCompiler
uses Maven to package the compiler and corresponding API into a single JAR file. Upon execution of this JAR
file, the Spark server is launched which enables the compiler to accept API requests.

To configure a Maven project the developer uses a Project Object Model to define, firstly how the software
should be built, and secondly the dependencies it requires (conveniently, Maven has built-in dependencies for
both Spark and ANTLR). This configuration is stored in an XML file named pom.xml. The contents of the
FunCompiler’s pom.xml can be found in Appendix A.1. With the Project Object Model defined, we can simply
invoke mvn package to compile all the Java source files and package the deliverable code into an executable
JAR file.

6.3.3 Docker

Given what has been previously discussed, our current system infrastructure is illustrated in Figure 6.3. We see
how, through the use of Composer and Maven, we have already created convenient techniques for automating
the dependency retrieval and build process of the web-application and compiler respectively. However, we now
consider if we can find a tool that will allow us to apply this same technique to the project as a whole. In other
words, a tool which will automatically trigger the build, dependency retrieval and execution of both the web-
application and the compiler at the same time. This is possible through a software known as Docker, which
permits operating-system-level virtualisation.

Figure 6.3: Current system infrastructure

Docker is designed to make it easier to create, deploy, and run applications by using containers. A container
can be thought of as a miniature, high-speed virtual machine. Prior to obtaining a container, we must first build an
image. To build an image we use a configuration file known as a Dockerfile in which one can specify commands
that determine the environment of the image. These commands include downloading operating systems, setting
file permissions, launching software, etc. After using a Dockerfile to build an image, we can then “run” it, which
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creates a corresponding live container, as illustrated in Figure 6.4. It may be helpful to think of a container as an
instance of an image.

Figure 6.4: Creating a Docker container from an image

The FunCompiler contains two Dockerfiles which are used to build two different images: one for the web-
application, one for the compiler. Whilst we will not delve into specifics, these Dockerfiles contain the commands
to retrieve dependencies (using Composer or Maven), execute builds and launch the servers. The exact contents
of these Dockerfiles can be found in Appendices A.2 and A.3.

We can then use a sub-tool of Docker for running multi-container applications called Docker Compose.
We use a YAML file named docker-compose.yml to define services. Each service generally corresponds to
one image and thus one Dockerfile. In our case, we have two services, the web-application and the compiler.
By invoking docker-compose up, we launch the services defined in docker-compose.yml, which entails
automatically building the images from the Dockerfiles and then running these images, which creates the con-
tainers. Once both containers are live, the application is effectively up and running. To see the full contents of
the FunCompiler’s docker-compose.yml file refer to Appendix A.4.

There is a litany of advantages to using Docker but the fundamental point is that if another developer (or per-
haps the system admin of a server deploying the application) was to obtain the source code of the FunCompiler,
as long as they had Docker installed, they could install every dependency, execute all builds and enable the entire
FunCompiler application without having any of the constituent software available locally (e.g., PHP, Composer,
Maven, Apache, etc.). Therefore, this makes the FunCompiler extremely portable because every machine, re-
gardless of its own architecture, will build the application in precisely the same way, with precisely the same
versions of all dependencies.

With Docker implemented, we present the final system architecture of the FunCompiler, as demonstrated in
Figure 6.5. We see that both the web-application and the compiler are represented as containers and are both
operating and communicating within a Docker environment.

Figure 6.5: Final infrastructure of the FunCompiler
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Chapter 7

Implementation

This chapter offers a high-level overview of the FunCompiler’s implementation. As in Chapter 6, we decom-
pose the system into two separate components: the web-application and the compiler. For each component,
we examine the physical implementation details of any key aspects. We also briefly discuss the system’s test-
ing and continuous integration setup. Note that a full implementation of the FunCompiler can be accessed via
haiti.dcs.gla.ac.uk:8000 (note that you must be connected to the University of Glasgow’s School of Computing
Science network).

7.1 Compiler Implementation

We begin by discussing how we convert the original, stand-alone compiler into the micro-service as described in
Chapter 6.2. In order to accomplish this, two fundamental changes are necessary. Firstly, an API must be built
on top of the compiler in order to enable communication between itself and the web-application. Secondly, the
implementation of the compiler must be modified to return a large amount of structured data pertaining to the
compilation of a particular program. With these changes in place, external services (such as the FunCompiler’s
web-application) are able to send API requests containing a Fun program to the compiler and in response receive
an organised set of information that can be manipulated to build animations of the compilation process.

7.1.1 API Implementation

With reference to Section 6.3.2, recall that we intend to employ a Java micro-framework known as Spark to
encapsulate the compiler and create a compact API with a single endpoint. If an external service desires to
compile a Fun program, it must make a HTTP POST request to the API containing the following two query
parameters: program and type. The value of program is simply the plain text of the input program and the
value of type determines whether the compiler assembles information relevant to contextual analysis or code
generation. Listing 7.1 contains the implementation of this endpoint in its entirety.

1 post("/", (req, res) -> {
2 res.type("application/json");
3 String program = req.queryParams("program");
4 String type = req.queryParams("type");
5 InputStream programInputStream = new

ByteArrayInputStream(program.getBytes());
6 return FunRun.execute(programInputStream, type);
7 }, gson::toJson);
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Listing 7.1: API implementation

To create the endpoint, we utilise Java 8 lambda expressions to define a POST route listening at the root
URL. Within the body of the route we extract the values of the request’s query parameters (program and
type, as previously discussed) and supply them as arguments to the execute() method defined within the
FunRun module, which is the driver method in regards to the compilation of a program. The return value of
the execute() method is an object of the FunResponse class, of which each instance contains data collected
during the compilation of a program. It is this data that we intend to return as a response to the calling entity,
however, we must first utilise a Java library named GSON to serialise the contents of the FunResponse object
into JSON, allowing it to be transmitted across a network.

7.1.2 Compiler Output & The FunResponse Class

To collect information relevant to the compilation of a program, we use a class named FunResponse. For each
API request (and thus program to be compiled) received, a new object of this class is instantiated. Each object
is populated as the compilation proceeds, and is returned upon completion of the compilation. The information
that we desire to collect is stored within the instance variables of this object, the declarations of which are given
in Listing 7.2 (with access modifiers removed).

1 int numSyntaxErrors;
2 int numContextualErrors;
3 List<String> syntaxErrors;
4 List<String> contextualErrors;
5 JsonArray treeNodes;
6 JsonArray nodeOrder;

Listing 7.2: FunResponse instance variables

In the interest of brevity, the details of the visitor/listener patterns used to derive the values of these variables
are not discussed, however, we will analyse the typical contents of each variable and consider how the data
contained within can be interpreted to build visualisations/animations.

Syntax & Contextual Errors

The first four instance variables of Listing 7.2 on lines 1-4 simply serve to store any syntactic/contextual errors
that the compiler detects within the input program. Lines 1 and 2 collect the number of errors, whereas lines 3
and 4 collect a list of the actual error messages, including line and character numbers.

It should be noted that the contents of these variables do not assist in forming an animation. Their purpose
is to provide a means of conveying to the calling service that errors were recognised within the supplied input
program. For example, the web-application of the FunCompiler uses these values to report the errors to the user.
In the case that the supplied input program contains no errors, these variables will remain empty and unused.

AST Representation

The fifth instance variable, treeNodes, is used to store a textual representation of the AST which can be
interpreted to create and display a visual representation. The data stored within this variable is an array of
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JSON objects (forming a JsonArray data type), where each object corresponds to a distinct node within the
program’s AST. Each object contains four fields of information used to describe the node it represents:

• An ID, uniquely identifying the node.

• A parent ID, identifying the node’s parent.

• A node name, identifying the type of node (e.g, VAR, ID, PROC, etc.)

• A node value, identifying the text that is to be associated with the node when visually displayed within the
AST (in many cases, this is the same as the node name).

By examining the ID and parent ID of each node, it is possible to take a flat representation of the AST, as we
have in treeNodes, and interpret it as a hierarchical representation. For example, consider Listing 7.3 which
contains an extract of three nodes from a typical treeNodes array.

{
"id": 306481855,
"nodeName": "DIV",
"nodeValue": "DIV",
"parentId": 1670278882

},
{
"id": 254315796,
"nodeName": "ID",
"nodeValue": "n",
"parentId": 306481855

},
{
"id": 532745069,
"nodeName": "NUM",
"nodeValue": "2",
"parentId": 306481855

}

Listing 7.3: Extract from a treeNodes array

Within this example there are three different types of node: DIV, ID and NUM. By examining the ID of the DIV
node and the parent ID of the ID and NUM nodes, it is clear that ID and NUM are child nodes of DIV. By applying
this knowledge, we can create a visual representation of the AST as derived from the above treeNodes array, as
illustrated in Figure 7.1. We see that through inspection of the flat array returned from the API, external services
can perceive the hierarchical relationships between the nodes of the AST, allowing the creation of visualisations.

Figure 7.1: The visual representation of an AST as derived from Listing 7.3
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Animation Order & Augmentations

After establishing a means of building a visual representation of the AST via the treeNodes array, information
is still required that provides instruction in regards to specifically how the AST should be animated, i.e., in which
order each node should be highlighted. Also, each time a node is highlighted, we need to provide a set of
data which can be parsed to build the relevant augmentations as discussed in Chapter 5. We do this through
the use of a final instance variable, nodeOrder. Similarly to treeNodes, nodeOrder contains an array
of JSON objects. For example, consider Listing 7.4 which contains an extract of three JSON objects from the
nodeOrder array.

{
"id": 306481855,
"explanations": [

"Walk expr1"
],
"table": [
{
"scope": "global",
"id": "n",
"type_address": "int"

}
]

},
{
"id": 254315796,
"explanations": [

"Lookup ’n’ and retrieve its type, int"
],
"table": [
{
"scope": "global",
"id": "n",
"type_address": "int"

}
]

},
{
"id": 306481855,
"explanations": [

"Walk expr1",
"Walk expr2"

],
"table": [
{
"scope": "global",
"id": "n",
"type_address": "int"

}
]

}

Listing 7.4: Extract from a nodeOrder array

The important thing to recognise is that each object within the nodeOrder array has a direct link to a node
in the treeNodes array via the ID field. In the above example we see that the first and third object have the
same ID as the DIV node in Listing 7.3, and that the second object has the same ID as the ID node. The relevance
of these links is that the order of the nodes in nodeOrder dictates the order in which the nodes in treeNodes
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should be highlighted during the animation. Applying this logic to the Listings in 7.3 and 7.4 indicates that
the animation should first highlight the DIV node, then the ID node, and finally the DIV node once again, as
illustrated in Figure 7.2.

Figure 7.2: The animation of the AST as dictated by the Listings 7.3 and 7.4

We also see that we have fields for “explanations” and “table”. These fields represent some of the augmen-
tations that were discussed in Chapter 5. For each JSON object in nodeOrder, when the node represented
by the ID field is highlighted during the animation, the value of fields such as ”explanations” specify the type
and value of the augmentations that should be associated with that particular step of the animation. Figure 7.3
demonstrates this concept by extending the animation shown in Figure 7.2 by inserting the “explanations” aug-
mentation as specified in Listing 7.4. Note that the sort of augmentations that are supplied to the nodeOrder
array are dependent upon the value of the query parameter type, as discussed in Section 7.1.1.

Figure 7.3: The animation of the AST as dictated by the Listings 7.3 and 7.4 with explanatory messages added

Within the nodeOrder array we have effectively stored a complete history of the program’s compilation.
That is, for each individual time a node is visited, we have retained a “snapshot” of any relevant information at
that exact moment (e.g., explanatory messages, type table, etc.). This is extremely useful because, for example,
we specified in Chapter 5 that the web-application is required to implement the playing, restarting and revers-
ing of an animation. Since the animator can freely traverse forwards or backwards through the nodeOrder
array whilst maintaining all the correct information, we can almost trivially implement these advanced playback
controls, the specifics of which are discussed more in Section 7.2.4.

7.2 Web-application Implementation

In this section we describe the physical implementation of the interface designs we created in Chapter 5. For
each component of the interface, we examine its role within the web-application, its aesthetic implementation
and any interesting tools or libraries that were used to assist in its development. Note that whilst not discussed
explicitly, the implementation of the FunCompiler’s user interface does make extensive use of HTML, CSS,
SASS, Bootstrap, vanilla Javascipt, jQuery and NodeJS.

Whilst we do to some extent consider how the web-application interacts with the compiler API, once again
in the interest of brevity, we will not discuss the minutiae of using Javascript to parse the contents of the response
or to build the data structures that facilitate the animations.
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7.2.1 Code Editor Implementation

Firstly, we consider how to implement the code editor as designed in Section 5.1.1. Within this section we
remarked how, ideally, the code editor should follow some of the semantics of standard programmatic text editors.
To produce these semantics, we use a Javascript library known as CodeMirror which allows the embedding of
a versatile text editor within a browser [7]. CodeMirror provides syntax highlighting for over 100 predefined
languages, bracket matching, auto-indentation and much more.

Unsurprisingly, Fun is not included as one of the languages that is provided with built-in syntax highlighting,
however, CodeMirror does allow the developer to define a custom lexer for non-standard languages. We create
a simple lexer for Fun in which we state some of the language’s syntactic features such as keywords, types and
identifiers.

The implementation of the code editor is provided in Figure 7.4. We see how syntax highlighting has been
provided for the various different syntactic structures along with line numbers, line highlighting, and whilst
not visible from the diagram, auto-indentation. Below the input code two buttons have been inserted, one for
contextual analysis and the other for code generation. Pressing one of these buttons triggers the web-application
to send an API request to the compiler, where the program currently entered in the code editor and the button
pressed form the values of the query parameters program and type as discussed in Section 7.1.1.

Figure 7.4: Implementation of the code editor

7.2.2 AST Implementation

In Section 5.1.2 we discussed how we require the web-application to display an AST in the conventional hierar-
chical tree format, alongside consecutively highlighting nodes to form an animation. We accomplish this using
another Javascript library named D3 [8], which is a popular tool for data visualisation.

After sending an API request to the compiler by pressing one of the buttons in Figure 7.4, the web-application
can utilise the information contained in the returned response to build a visualisation of the input program’s AST.
Similarly to how we interpreted Listing 7.3 to build Figure 7.1, we can use D3 to parse the treeNodes array
contained within the API response to build a data structure containing a hierarchical (parent-child) representation
of the AST.

D3 can now automatically parse this hierarchy to generate an SVG [14] representation of the AST. In Figure
7.5 we illustrate a series of ASTs generated from different Fun programs using D3. We see how, regardless of the
number of the nodes within the AST (and thus the size of the input program), D3 intuitively shrinks or expands
the layout of the tree to create the most eloquent visualisation possible.

The root node of each AST in Figure 7.5 demonstrates the aesthetics in regard to how the animator will
highlight nodes during the traversal. Recall that to derive the order in which the nodes should be animated
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Figure 7.5: SVG representations of different Fun programs generated using D3

during the traversal, we need to iterate through the nodeOrder array which is also contained within the API
response. Note that each node within the D3 generated SVG representation of the AST is itself an individual
SVG component, which has an ID associated with it as specified in the treeNodes array. This means that when
attempting to determine which node in the AST to highlight next, we can simply inspect the next ID specified in
the nodeOrder array and highlight the SVG component with the corresponding ID. Figure 7.6 illustrates how
nodes within the AST will be highlighted as the animation proceeds.

(a) Step 1 of animation (b) Step 2 of animation (c) Step 3 of animation

Figure 7.6: The first three steps of a Fun program’s animation

7.2.3 Augmentations Implementation

In Section 5.1.3 we created designs for the augmentations that would accompany each step of the animation.
Simultaneously to using the ID field of each object in the nodeOrder array to consecutively highlight nodes
within the AST, we can also retrieve the corresponding list of augmentations. The web-application can use the
data contained within to build and display visual representations of the augmentations alongside the animation.
Figure 7.7 illustrates the implementation of augmentations for both a contextual analysis animation and a code
generation animation.

Note that for code template augmentations, we do not require the compiler to return the contents of each code
template within the API response. Since the code template is fixed for each node type, we can simply examine
the name of the node (as displayed at the top of each diagram in Figure 7.7) and load the corresponding code
template from local storage.

7.2.4 Playback Controls Implementation

To implement the playback controls designed in Section 5.1.4 we simply utilise Bootstrap ”glyphicons” as illus-
trated in Figure 7.8.
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(a) Contextual analysis augmentations (b) Code generation augmentations

Figure 7.7: Implementation of the augmentations

Figure 7.8: Implementation of the playback controls

Each button has the following semantics with respect to the traversal of the nodeOrder array (recall by
traversing through the array we are implicitly executing the animation over the AST):

• Pressing the play button will iterate through the array one element at a time at regular time intervals (e.g.,
every second) and replace the play button with a pause button.

• Pressing the pause button whilst the animation is playing will halt the iteration of the array at its current
position and replace the pause button with a play button.

• Pressing the forwards/backwards button will move to the next or previous element in the array respectively.
If the animation is playing when one of these buttons is pressed, it is automatically paused.

• Pressing the play button when the animation has finished will automatically restart the animation from the
beginning.

7.2.5 Fun Specification Implementation

The final interface component we are required to implement is the Fun specification as designed in Section 5.1.5.
We embed the Fun specification into the web-application and create a tabbed navigation menu as illustrated in
Figure 7.9. Each tab within the menu navigates to a different section of the specification.

7.2.6 Complete Implementation

Finally, we can combine each of these interface implementations to create the complete designs of the FunCom-
piler specified in Section 5.2. Figure 7.10 illustrates the full view of the landing page, the contextual analysis
animation page and the code generation animation page.

Note that within the navigation menu we have added a “Home” button to return the user to the landing page
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Figure 7.9: Implementation of the Fun specification

(a) Landing page (b) Contextual analysis animation page (c) Code generation animation page

Figure 7.10: The complete implementation of the FunCompiler

alongside a drop-drown menu of “Examples”, illustrated in Figure 7.11. Each item in the drop-down menu
corresponds to an example Fun program which when clicked, is automatically inserted into the code editor
(these example programs are pulled from the “tests” directory of the Fun source code distributed to students at
the University of Glasgow).

Figure 7.11: Drop-down menu of example Fun programs

7.3 Testing & Continuous Integration

Finally, we take a very brief look at the testing and continuous integration (CI) setup of the FunCompiler. For
the purposes of this project, we treat the compiler (not including the API) as a third-party piece of software and
assume that it has already been tested to an acceptable extent. Therefore, we focus our testing efforts on the
correctness of the web-application and the API of the compiler.

The test suite of the FunCompiler utilises PHPUnit [12], where the majority of tests are designed to ensure
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correct communication between the web-application and the compiler. In particular, we deliver API requests to
the compiler and verify that the response received was as expected. For example, Listing 7.5 exhibits a test taken
from the FunCompiler’s test suite which sends an API request to the compiler which contains a syntactically
invalid program (missing ’:’ at the end of the while statement).

1 public function testSuccessfulAndInvalidCARequest()
2 {
3 $response = $this->json(’POST’, route(’execute’, [
4 ’type’ => ’ca’,
5 ’program’ => ’int n = 15 proc main(): while n > 1 n = n/2 . .’
6 ]));
7 $response->assertSuccessful()
8 ->assertJsonFragment([
9 ’redirect_url’ => ’/’,

10 ’numSyntaxErrors’ => 1,
11 ’numContextualErrors’ => 0,
12 ’syntaxErrors’ => [’line 1:36 missing \’:\’ at \’n\’’],
13 ])
14 ->assertDontSeeText(’nodeOrder’)
15 ->assertDontSeeText(’treeNodes’);
16 }

Listing 7.5: FunCompiler API test

The test looks to assert several factors, however, we are mainly seeking to verify that the API successfully
included a syntax error with the correct error message, alongside not including the data structures used to create
an animation (treeNodes and nodeOrder).

The FunCompiler is well integrated with Travis CI [6], meaning that each time we push changes to the
FunCompiler’s version control service (GitHub), Travis executes the entire build process (which, incidentally, is
very straightforward due to the use of Docker) and then runs the test suite. This not only verifies that all tests pass
successfully, but also detects any errors in the project’s build. Figure 7.12 illustrates the FunCompiler’s build
completing successfully and all tests passing with a line coverage of 92.5%. Refer to Appendix A.5 to view the
FunCompiler’s Travis configuration file.

Figure 7.12: Successful build and test execution of the FunCompiler via Travis CI
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Chapter 8

Evaluation

This chapter presents two separate evaluations, each aimed to assess a different aspect of the FunCompiler.
The first evaluation considers the effectiveness of the application as an educational resource, while the second
evaluation measures the quality of the application’s user interface. For each evaluation, we offer the method by
which the evaluation was conducted, the results that were attained and a discussion of the results implications.

8.1 Learning Evaluation

8.1.1 Method

One evaluation goal was to assess the effectiveness of the FunCompiler as a learning tool. We sought an eval-
uation method that would test if an individual’s ability to learn or revise a concept was enhanced when using
the system as an educational resource. To do this, a quiz was devised based on the concept of code selection,
as described in Section 3.3.3. The quiz was attempted by ten participants, each of whom is a Glasgow Univer-
sity student currently enrolled in their fourth year of computer science. All participants successfully passed the
course Programming Languages in their previous year of studies, meaning they had some prior understanding of
the principles of code selection. The ten participants were divided into two groups of five, where one group was
provided with access to the FunCompiler before attempting the quiz and the other was not. The participants using
the FunCompiler will be referred to as the “animation” group and the other participants as the “non-animation”
group.

The quiz consisted of ten questions. Each question was based on the notion of using an AST and an address
table to predict which object code the compiler would generate after processing the AST. For example, Figure
8.1 exhibits a question taken from the quiz, where participants would be required to predict the object code of:
LOADG 5, LOADG 6, ADD. Each participant’s performance on the quiz was measured by a mark out of ten.

Figure 8.1: Example question taken from the evaluation quiz
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Before the quiz, all participants were supplied with a reference sheet that provided an introduction to code
selection using descriptions and diagrams. Those participants with access to the FunCompiler were encouraged
to utilise the application as a means of better understanding the details found in the reference sheet. They were
invited to try animating their own Fun programs or to use the “Examples” tab within the navigation menu to find
a selection of predefined sample programs.

All participants were given a maximum of 15 minutes learning time prior to the start of the quiz, and 15
minutes to complete the quiz once they began. During the quiz, access to the FunCompiler was no longer
allowed but all participants were permitted to retain access to the reference sheet. For more details on precisely
how the evaluation was executed, please refer to Appendix B, which contains all evaluation materials including
the reference sheet and the quiz.

8.1.2 Results

The results of the learning evaluation are presented in Table 8.1. The table illustrates each participant’s score
(out of ten) and calculates the average score of both groups. The results show that, on average, the animation
group performed approximately 43% better than their non-animation counterparts.

Score/10
Participant 1 Participant 2 Participant 3 Participant 4 Participant 5 Average

Non-animation Group 6 4 5 4 9 5.6
Animation Group 10 7 8 8 7 8

Table 8.1: Learning evaluation results

8.1.3 Discussion

The purpose of the learning evaluation was two-fold. The primary objective was to demonstrate that the Fun-
Compiler is an effective educational tool. That is, we wish to show that when attempting to learn particular
aspects of compilation (such as code selection), the FunCompiler provides an advantage to simply learning from
diagrams and text. The secondary objective was to provide supporting evidence for a theory we encountered
in Chapter 2, the theory being that whilst algorithm animation might not be as helpful as we would intuitively
believe, it is perhaps more beneficial to those looking to revise a concept, rather than learn it for the first time.

By the significant improvement in performance (43%) seen in the animation group compared to the non-
animation group, it is reasonable to claim our primary objective has been satisfied. The improvement in test
performance can likely be attributed to the fact that those with access to the FunCompiler were able to build the
ASTs found in the reference sheet directly within the application. Consequently, when running the animation,
participants were able to visualise exactly how the compiler would generate the object code for any given instance
of the construct represented by the AST. Meanwhile, the participants in the non-animation group clearly struggled
to apply the examples given within the reference sheet to the unseen problems in the quiz. That is, like discussed
in Chapter 1, teaching abstract notions using predefined examples does not necessarily promote a generalised
understanding of a topic.

Achieving the secondary objective of the evaluation proved to be much more difficult. The initial plan
was to conduct the same evaluation as described above, but also include a second group of participants who
were computer science students and had not studied the course Programming Languages before. The evaluation
would have aimed to show that whilst the participants who had access to the FunCompiler performed better in
both cases, the improvement in performance of those who were revising the material would be greater than in
those learning it for the first time. Unfortunately, under the circumstances, gaining enough suitable participants to
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provide meaningful results was not possible. Therefore, this aspect of the evaluation was abandoned. Regardless,
unlike the results of the studies discussed in Chapter 2, this evaluation did reveal that the animation was of
significant benefit. Whilst, without a benchmark, we cannot say that this is definitively due to the fact that the
participants were revising, it is perhaps an interesting consideration to keep in mind.

8.2 User Interface Evaluation

8.2.1 Method

The second evaluation goal was to assess the quality of the FunCompiler’s user interface. After the participants
had finished the quiz, those that had access to the FunCompiler (five participants) were asked to complete a short
questionnaire aimed to evaluate their experience with the user interface. The questionnaire is heavily based on the
Questionnaire for User Interface Satisfaction (QUIS) which is a standardised and popular method of measuring
the quality of a user interface, originally designed at the University of Maryland [5].

Again, the full questionnaire can be found in Appendix B, but in short, the questionnaire is split into five
categories, each consisting of questions presenting the participant with a typical characteristic of a user interface
and asking them to rate their experience with that feature on a scale of 0-9, where each scale is provided with
a specific interpretation. For example, Figure 8.2 illustrates one of the questions taken from the questionnaire,
which asks the user to rate their experience in regards to the positioning of messages, 0 being very inconsistent,
9 being very consistent.

Figure 8.2: Example question taken from the questionnaire

8.2.2 Results

Whilst we won’t discuss the contents of each response individually, we do collect all the responses gathered for
each category and provide the average score on a scale of 0 to 9. A high score indicates a positive reaction to that
particular category and a low score indicates a negative reaction.

• Screen: concerns the readability and organisation of information on screen. Average score: 8.25.

• Terminology and System Information: concerns the consistent use of terms and appropriate presentation
of feedback. Average score: 7.

• Learning: concerns the ease with which users can understand how to operate the system. Average score:
7.7.

• System Capabilities: concerns the high-level factors of the system including speed and reliability. Average
Score: 8.3.

• Overall Reaction to the Software: concerns general aspects including flexibility and ease of use. Average
score: 8.1.
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8.2.3 Discussion

In general, the feedback to the user interface evaluation was overwhelmingly positive. The majority of partici-
pants felt it was fast, intuitive and aesthetically pleasing. The issues the participants did have mainly revolved
around the concept of learning how to initially use the application along with which features were available.
Many participants felt that, whilst the embedded specification was useful for recapping the semantics of the Fun
language, it did not necessarily contain any information explaining what the application did or how it worked.
Overall, the participants felt that access to a user guide would certainly be of great benefit. It was initially
considered unnecessary to expand the size of the application to embed a user guide given that, in most cases,
students would be directed to this application by a lecturer, who would demonstrate its usage in class. However,
a resolution to this issue would be to host a user guide externally (as a PDF download, perhaps) that could be
accessed via a link within the FunCompiler. This way, the size of the application need not be expanded (other
than to include a single link), and all users would have access to materials detailing the application’s operation.
Consequently, a user guide was created and is included in Appendix C.

Whilst the FunCompiler does have a robust responsive design (NFR 3), some participants did point out that
the layout which certain visual elements conform to on smaller screens makes the animation slightly difficult
to interpret due to the fact that one cannot see the AST and the augmentations within the same view. Unfortu-
nately, this comes as a consequence of an application that demands a large amount of visual information to be
displayed simultaneously in the same perspective. Currently, it is not immediately clear how this problem could
be resolved but a redesign of the FunCompiler’s responsive system could be listed for future work. Whilst using
the application from a mobile phone is certainly still possible, for the time being, users are advised to use tablet
or larger sized screens for the best experience.

We take this opportunity to note that if this evaluation had been repeated, we could have taken advantage
of the fact that QUIS is a standardised technique. Meaning, we could have asked the same participants to
complete the questionnaire for a similar piece of algorithm animation software, such as VisuAlgo discussed in
Chapter 2. Being that VisuAlgo is one of the most well-implemented algorithm animation applications currently
available, the results of this questionnaire would have provided an appropriate benchmark to compare against
the FunCompiler. This comparison could have been an effective tool for guiding which areas of the application
required the most work.
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Chapter 9

Conclusion

9.1 Summary

The aim of this project was to develop a web-application that could be used as an educational resource when
attempting to learn or teach certain concepts of compilation. The result of this project allows users to express
the abstract notions characterised by compilation as concrete visualisations. The web-application provides the
ability to generate a dynamic animation of the compilation process, which traverses over the AST built from a Fun
program of the user’s choice. The user can choose to animate either the contextual analysis or code generation
phase of compilation, where each animation is augmented with supplementary information to further assist the
user’s understanding.

The final implementation of the FunCompiler comfortably achieves all the requirements as collected in Chap-
ter 4 along with completing several extra features. The evaluation conducted in Chapter 8 presents suitable ev-
idence to show that the system can be utilised as an effective learning tool whilst simultaneously providing an
enjoyable user experience. The application has already been deployed by the University of Glasgow’s Comput-
ing Science department at haiti.dcs.gla.ac.uk:8000 and will hopefully be integrated into future instalments of the
Programming Languages course, providing a benefit to both the students and the lecturer. The system has been
tested and known to be compatible with (at least) the most recent versions of Google Chrome, Firefox, Microsoft
Edge and Internet Explorer (NFR 1).

9.2 Lessons Learned

Throughout the course of this project, the author has further solidified his understanding of web-application
development in general, but also, through working extensively with ANTLR and implementing custom listen-
ers/visitors, has gained a much deeper insight into the finer details of compiler operation and behaviour. Ad-
ditionally, the author has witnessed first-hand the benefits of a well-implemented system architecture, whereby,
through the use of tools like the Docker, the development and deployment of a diverse project such as this one
became effortless.

Primarily, the author has developed a new found respect for the importance of efficient evaluation planning.
That is, to have learned that without the correct participants and the appropriate environment, a well-conceived
evaluation goal alone is not sufficient. Had the evaluation been carried out more effectively, we would have been
able to use the FunCompiler as the ideal tool to more closely investigate the claims and theories we encountered
in our background research of algorithm animation.
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9.3 Future Work

9.3.1 Interpretation of Object Code

During the evaluation, more than one participant questioned the author as to the whereabouts of the program’s
output, i.e., the value of any write() statements. Given the nature of the application, these participants seemed
to expect that the generated object code would be executed (or, realistically, interpreted). Interpretation of the
object code was a feature that, whilst certainly possible, was both not within the scope of the project’s specifica-
tion and considered to have several drawbacks which resulted in its inclusion being rejected. These drawbacks
include handling indefinitely large outputs and dealing with programs that contain harmful runtime issues. These
runtime issues include problems such as infinite loops, which could cause either the client’s browser or the server
machine to crash, which would require complex mechanisms to efficiently prevent.

An advantage of removing interpretation is that any program, even one with infinite loops, can be submitted
and animated in the FunCompiler without causing any issues for either the client or the server (NFR 4). However,
it is the case that, with a large amount of extra development time, we could retain the same functionality but
allow the execution of object code by implementing the appropriate safety mechanisms (for example, timeouts).
Execution of the object code would allow the FunCompiler to behave as an interactive shell (still including all
the existing functionality), comparable to modern REPLs [13].

9.3.2 Inclusion of More Languages

In Section 3.1 we discussed how the Fun language was general enough that the concepts learned using Fun
could easily be applied to other languages. Regardless, some users, especially those who are not studying the
Programming Languages course, may prefer that the application was based on a language such as C, Python, or
any other language of their choosing.

An especially useful feature would be the ability for users to select the language they were looking to
write/animate their programs in. Given the project’s powerful setup, if supplied with the appropriate ANTLR
files to support each language (a grammar and any relevant visitors/listeners), this feature could be enabled with
relative ease. This would create an application that was more accessible to a far wider audience.
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Appendix A

Code Listings

A.1 Maven Project Object Model

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>api</groupId>
<artifactId>api</artifactId>
<version>1.0</version>

<dependencies>
<dependency>

<groupId>com.sparkjava</groupId>
<artifactId>spark-core</artifactId>
<version>2.0.0</version>

</dependency>
<dependency>

<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.7.21</version>

</dependency>
<dependency>

<groupId>org.antlr</groupId>
<artifactId>antlr4-runtime</artifactId>
<version>4.5.3</version>

</dependency>
<dependency>

<groupId>com.google.code.gson</groupId>
<artifactId>gson</artifactId>
<version>2.8.0</version>

</dependency>
</dependencies>

<build>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
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<artifactId>maven-jar-plugin</artifactId>
<version>2.4</version>
<configuration>

<finalName>api</finalName>
<archive>

<manifest>
<addClasspath>true</addClasspath>
<mainClass>api.Api</mainClass>
<classpathPrefix>dependency-jars/</classpathPrefix>

</manifest>
</archive>

</configuration>
</plugin>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.1</version>
<configuration>

<source>1.8</source>
<target>1.8</target>

</configuration>
</plugin>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<executions>

<execution>
<goals>

<goal>attached</goal>
</goals>
<phase>package</phase>
<configuration>

<finalName>api</finalName>
<descriptorRefs>

<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>

<manifest>
<mainClass>api.Api</mainClass>

</manifest>
</archive>

</configuration>
</execution>

</executions>
</plugin>
<plugin>

<groupId>org.antlr</groupId>
<artifactId>antlr4-maven-plugin</artifactId>
<version>4.5.3</version>
<executions>

<execution>
<goals>

<goal>antlr4</goal>
</goals>
<configuration>

<sourceDirectory>${basedir}/src/main/antlr4/api</sourceDirectory>
<listener>false</listener>
<visitor>true</visitor>
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</configuration>
</execution>

</executions>
</plugin>

</plugins>
</build>

</project>

Listing A.1: pox.xml

A.2 Web-Application Dockerfile

# Use a PHP7.0 image that is packaged with the Apache web server
FROM php:7.0-apache
# Download composer and install composer.phar in /usr/local/bin
RUN curl -sS https://getcomposer.org/installer | php -- --install-dir=/usr/local/

bin --filename=composer
# Create the ’app’ directory and set to be the working directory of the container
WORKDIR /app
# Copy all files in current directory to the working directory of the container
COPY . /app
# Update packages and install composer and PHP dependencies.
RUN apt-get update -yqq
RUN apt-get install git zlib1g-dev -yqq
RUN pecl install xdebug
# Compile PHP, include these extensions.
RUN docker-php-ext-install zip
RUN docker-php-ext-enable xdebug
# Use the ’composer.json’ file to download any PHP dependencies (including

Laravel)
RUN composer install
RUN cp .env.example .env
RUN php artisan key:generate

Listing A.2: Dockerfile

A.3 Compiler Dockerfile

# Use an OpenJDK8 image to run and compile Java files
FROM openjdk:8
# Install Maven in the container
RUN apt-get update
RUN apt-get install -y maven
# Create the ’compiler’ directory and set to be the working directory of the

container
WORKDIR /compiler
# Add ’pom.xml’ to the container
ADD pom.xml /compiler/pom.xml
# Download maven dependencies (e.g., Antlr and Spark)
RUN ["mvn", "dependency:resolve"]
RUN ["mvn", "verify"]
# Add the source directory
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ADD src /compiler/src
# Compile and package into a fat jar
RUN ["mvn", "package"]

Listing A.3: Dockerfile

A.4 Docker Compose File

# Version of the docker-compose file format
version: ’3’

# Individual components of the overall product (the web app and the compiler api)
services:

compiler:
# Name the resulting container
container_name: FunCompiler
# Configuration options applied at build time (i.e., location of

Dockerfile)
build: ./compiler
# Launch the Spark web server (the compiler API)
command: java -jar target/api-jar-with-dependencies.jar
# Expose port 8001 on the host and 4567 on the container
ports:

- 8001:4567

app:
# Name the resulting container
container_name: FunApp
# Configuration options applied at build time (i.e., location of

Dockerfile)
build: ./app
# Launch the Laravel server (the web app)
command: php artisan serve --host=0.0.0.0 --port=8000
# Expose port 8000 on the host and port 8000 on the container
ports:

- 8000:8000
# Starts services in dependency order, i.e., compiler before app
depends_on:

- compiler

Listing A.4: docker-compose.production.yml

A.5 Travis Configuration File

sudo: required

services:
- docker

script:
- docker-compose -f docker-compose.production.yml up -d
- docker exec FunApp sh -c "vendor/bin/phpunit --coverage-text"

Listing A.5: travis.yml
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Appendix B

Evaluation Materials

B.1 Quiz Reference Materials

Figure B.1: Quiz reference materials 1
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Figure B.2: Quiz reference materials 2
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Figure B.3: Quiz reference materials 3
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B.2 Quiz

Figure B.4: Quiz 1
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Figure B.5: Quiz 2
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Figure B.6: Quiz 3
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B.3 Questionnaire

Figure B.7: Questionnaire
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Appendix C

User Guide

Figure C.1: User guide page 1
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Figure C.2: User guide page 2
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Figure C.3: User guide page 3
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Appendix D

Full-size Images

Note: if you are viewing this dissertation via a PDF, all images within the appendix are linked to their corre-
sponding versions in the body, and vice versa.

Figure 1.1: A sequence of slides demonstrating a depth-first traversal over a binary tree

Figure 2.1: A sequence of stills from an insertion sort algorithm
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Figure 2.2a: Examples of existing algorithm animation software - VisuAlgo

Figure 2.2b: Examples of existing algorithm animation software - USF’s Dijkstra’s algorithm animation
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Figure 3.1a: Parse tree and AST of the same hypothetical Fun program - Parse tree

Figure 3.1b: Parse tree and AST of the same hypothetical Fun program - AST

Figure 3.2: Typical compilation pipeline
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Figure 3.3: Lexing of source code into a stoken stream

Figure 3.4: Type table

Figure 3.5a: ASTs demonstrating the declaration and assignment of a variable n (assuming global scope) -
Variable declaration

Figure 3.5b: ASTs demonstrating the declaration and assignment of a variable n (assuming global scope) -
Variable assignment
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Figure 3.6: Address table

Figure 3.7a: AST and code template of a PLUS construct - AST

Figure 3.7b: AST and code template of a PLUS construct - Code template

Figure 5.1: Code editor wireframe
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Figure 5.2a: AST wireframes - Step 1 of animation

61



Figure 5.2b: AST wireframes - Step 2 of animation

62



Figure 5.2c: AST wireframes - Step 3 of animation
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Figure 5.3a: Augmentations wireframe - Contextual analysis augmentations

Figure 5.3b: Augmentations wireframe - Code generation augmentations

Figure 5.4a: Playback controls wireframe
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Figure 5.4b: Playback controls wireframe

Figure 5.5: Fun specification wireframe

Figure 5.6a: The three main sections of the FunCompiler - Landing page wireframe
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Figure 5.6b: The three main sections of the FunCompiler - Contextual analysis animation wireframe
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Figure 5.6c: The three main sections of the FunCompiler - Code generation animation wireframe
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Figure 5.7: Syntax error wireframe

Figure 6.1a: Monolithic vs. micro-service architecture - Monolithic architecture
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Figure 6.1b: Monolithic vs. micro-service architecture - Micro-service architecture

Figure 6.2: Web-application communicating with the compiler via an API

Figure 6.3: Current system infrastructure
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Figure 6.4: Creating a Docker container from an image

Figure 6.5: Final infrastructure of the Funcompiler

Figure 7.1: The visual representation of an AST as derived from Listing 7.3
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Figure 7.2: The animation of the AST as dictated by the Listings 7.3 and 7.4

Figure 7.3: The animation of the AST as dictated by the Listings 7.3 and 7.4 with explanatory messages added

Figure 7.4: Implementation of the code editor
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Figure 7.5a: SVG representations of different Fun programs generated using D3
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Figure 7.5b: SVG representations of different Fun programs generated using D3
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Figure 7.5c: SVG representations of different Fun programs generated using D3
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Figure 7.6a: The first three steps of a Fun program’s animation - Step 1 of animation
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Figure 7.6b: The first three steps of a Fun program’s animation - Step 2 of animation
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Figure 7.6c: The first three steps of a Fun program’s animation - Step 3 of animation
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Figure 7.7a: Implementation of the augmentations - Contextual analysis augmentations
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Figure 7.7b: Implementation of the augmentations - Code generation augmentations
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Figure 7.8a: Implementation of the playback controls

Figure 7.8b: Implementation of the playback controls

Figure 7.9a: Implementation of the Fun specification
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Figure 7.9b: Implementation of the Fun specification

Figure 7.10a: The complete implementation of the FunCompiler - Landing page
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Figure 7.10b: The complete implementation of the FunCompiler - Contextual analysis animation page

Figure 7.10c: The complete implementation of the FunCompiler - Code generation animation page
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Figure 7.11: Drop-down menu of example Fun programs
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Figure 7.12: Successful build and test execution of the FunCompiler via Travis CI
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Figure 8.1: Example question taken from the evaluation quiz

Figure 8.2: Example question taken from the questionnaire
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